Copied to
clipboard

G = C42.195D4order 128 = 27

177th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.195D4, C23.542C24, C22.2342- 1+4, C424C4.25C2, C4.15(C4.4D4), (C2×C42).618C22, (C22×C4).152C23, C22.367(C22×D4), (C22×Q8).160C22, C23.67C23.49C2, C23.83C23.24C2, C2.C42.555C22, C2.46(C23.38C23), C2.29(C22.35C24), (C2×C4⋊Q8).36C2, (C2×C4).401(C2×D4), C2.32(C2×C4.4D4), (C2×C4).664(C4○D4), (C2×C4⋊C4).368C22, C22.414(C2×C4○D4), (C2×C42.C2).24C2, SmallGroup(128,1374)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.195D4
C1C2C22C23C22×C4C22×Q8C23.67C23 — C42.195D4
C1C23 — C42.195D4
C1C23 — C42.195D4
C1C23 — C42.195D4

Generators and relations for C42.195D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2, ab=ba, cac-1=ab2, dad-1=a-1b2, bc=cb, dbd-1=b-1, dcd-1=a2b2c-1 >

Subgroups: 356 in 208 conjugacy classes, 100 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C42.C2, C4⋊Q8, C22×Q8, C424C4, C23.67C23, C23.83C23, C2×C42.C2, C2×C4⋊Q8, C42.195D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4.4D4, C22×D4, C2×C4○D4, 2- 1+4, C2×C4.4D4, C23.38C23, C22.35C24, C42.195D4

Smallest permutation representation of C42.195D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 26 35 119)(2 27 36 120)(3 28 33 117)(4 25 34 118)(5 88 94 57)(6 85 95 58)(7 86 96 59)(8 87 93 60)(9 53 102 84)(10 54 103 81)(11 55 104 82)(12 56 101 83)(13 50 106 78)(14 51 107 79)(15 52 108 80)(16 49 105 77)(17 92 110 61)(18 89 111 62)(19 90 112 63)(20 91 109 64)(21 65 114 38)(22 66 115 39)(23 67 116 40)(24 68 113 37)(29 46 122 73)(30 47 123 74)(31 48 124 75)(32 45 121 76)(41 100 72 125)(42 97 69 126)(43 98 70 127)(44 99 71 128)
(1 53 22 94)(2 81 23 6)(3 55 24 96)(4 83 21 8)(5 35 84 115)(7 33 82 113)(9 39 88 119)(10 67 85 27)(11 37 86 117)(12 65 87 25)(13 43 92 123)(14 71 89 31)(15 41 90 121)(16 69 91 29)(17 47 78 127)(18 75 79 99)(19 45 80 125)(20 73 77 97)(26 102 66 57)(28 104 68 59)(30 106 70 61)(32 108 72 63)(34 56 114 93)(36 54 116 95)(38 60 118 101)(40 58 120 103)(42 64 122 105)(44 62 124 107)(46 49 126 109)(48 51 128 111)(50 98 110 74)(52 100 112 76)
(1 108 3 106)(2 14 4 16)(5 70 7 72)(6 42 8 44)(9 74 11 76)(10 46 12 48)(13 35 15 33)(17 39 19 37)(18 65 20 67)(21 91 23 89)(22 63 24 61)(25 77 27 79)(26 52 28 50)(29 56 31 54)(30 82 32 84)(34 105 36 107)(38 109 40 111)(41 94 43 96)(45 102 47 104)(49 120 51 118)(53 123 55 121)(57 127 59 125)(58 97 60 99)(62 114 64 116)(66 112 68 110)(69 93 71 95)(73 101 75 103)(78 119 80 117)(81 122 83 124)(85 126 87 128)(86 100 88 98)(90 113 92 115)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,26,35,119)(2,27,36,120)(3,28,33,117)(4,25,34,118)(5,88,94,57)(6,85,95,58)(7,86,96,59)(8,87,93,60)(9,53,102,84)(10,54,103,81)(11,55,104,82)(12,56,101,83)(13,50,106,78)(14,51,107,79)(15,52,108,80)(16,49,105,77)(17,92,110,61)(18,89,111,62)(19,90,112,63)(20,91,109,64)(21,65,114,38)(22,66,115,39)(23,67,116,40)(24,68,113,37)(29,46,122,73)(30,47,123,74)(31,48,124,75)(32,45,121,76)(41,100,72,125)(42,97,69,126)(43,98,70,127)(44,99,71,128), (1,53,22,94)(2,81,23,6)(3,55,24,96)(4,83,21,8)(5,35,84,115)(7,33,82,113)(9,39,88,119)(10,67,85,27)(11,37,86,117)(12,65,87,25)(13,43,92,123)(14,71,89,31)(15,41,90,121)(16,69,91,29)(17,47,78,127)(18,75,79,99)(19,45,80,125)(20,73,77,97)(26,102,66,57)(28,104,68,59)(30,106,70,61)(32,108,72,63)(34,56,114,93)(36,54,116,95)(38,60,118,101)(40,58,120,103)(42,64,122,105)(44,62,124,107)(46,49,126,109)(48,51,128,111)(50,98,110,74)(52,100,112,76), (1,108,3,106)(2,14,4,16)(5,70,7,72)(6,42,8,44)(9,74,11,76)(10,46,12,48)(13,35,15,33)(17,39,19,37)(18,65,20,67)(21,91,23,89)(22,63,24,61)(25,77,27,79)(26,52,28,50)(29,56,31,54)(30,82,32,84)(34,105,36,107)(38,109,40,111)(41,94,43,96)(45,102,47,104)(49,120,51,118)(53,123,55,121)(57,127,59,125)(58,97,60,99)(62,114,64,116)(66,112,68,110)(69,93,71,95)(73,101,75,103)(78,119,80,117)(81,122,83,124)(85,126,87,128)(86,100,88,98)(90,113,92,115)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,26,35,119)(2,27,36,120)(3,28,33,117)(4,25,34,118)(5,88,94,57)(6,85,95,58)(7,86,96,59)(8,87,93,60)(9,53,102,84)(10,54,103,81)(11,55,104,82)(12,56,101,83)(13,50,106,78)(14,51,107,79)(15,52,108,80)(16,49,105,77)(17,92,110,61)(18,89,111,62)(19,90,112,63)(20,91,109,64)(21,65,114,38)(22,66,115,39)(23,67,116,40)(24,68,113,37)(29,46,122,73)(30,47,123,74)(31,48,124,75)(32,45,121,76)(41,100,72,125)(42,97,69,126)(43,98,70,127)(44,99,71,128), (1,53,22,94)(2,81,23,6)(3,55,24,96)(4,83,21,8)(5,35,84,115)(7,33,82,113)(9,39,88,119)(10,67,85,27)(11,37,86,117)(12,65,87,25)(13,43,92,123)(14,71,89,31)(15,41,90,121)(16,69,91,29)(17,47,78,127)(18,75,79,99)(19,45,80,125)(20,73,77,97)(26,102,66,57)(28,104,68,59)(30,106,70,61)(32,108,72,63)(34,56,114,93)(36,54,116,95)(38,60,118,101)(40,58,120,103)(42,64,122,105)(44,62,124,107)(46,49,126,109)(48,51,128,111)(50,98,110,74)(52,100,112,76), (1,108,3,106)(2,14,4,16)(5,70,7,72)(6,42,8,44)(9,74,11,76)(10,46,12,48)(13,35,15,33)(17,39,19,37)(18,65,20,67)(21,91,23,89)(22,63,24,61)(25,77,27,79)(26,52,28,50)(29,56,31,54)(30,82,32,84)(34,105,36,107)(38,109,40,111)(41,94,43,96)(45,102,47,104)(49,120,51,118)(53,123,55,121)(57,127,59,125)(58,97,60,99)(62,114,64,116)(66,112,68,110)(69,93,71,95)(73,101,75,103)(78,119,80,117)(81,122,83,124)(85,126,87,128)(86,100,88,98)(90,113,92,115) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,26,35,119),(2,27,36,120),(3,28,33,117),(4,25,34,118),(5,88,94,57),(6,85,95,58),(7,86,96,59),(8,87,93,60),(9,53,102,84),(10,54,103,81),(11,55,104,82),(12,56,101,83),(13,50,106,78),(14,51,107,79),(15,52,108,80),(16,49,105,77),(17,92,110,61),(18,89,111,62),(19,90,112,63),(20,91,109,64),(21,65,114,38),(22,66,115,39),(23,67,116,40),(24,68,113,37),(29,46,122,73),(30,47,123,74),(31,48,124,75),(32,45,121,76),(41,100,72,125),(42,97,69,126),(43,98,70,127),(44,99,71,128)], [(1,53,22,94),(2,81,23,6),(3,55,24,96),(4,83,21,8),(5,35,84,115),(7,33,82,113),(9,39,88,119),(10,67,85,27),(11,37,86,117),(12,65,87,25),(13,43,92,123),(14,71,89,31),(15,41,90,121),(16,69,91,29),(17,47,78,127),(18,75,79,99),(19,45,80,125),(20,73,77,97),(26,102,66,57),(28,104,68,59),(30,106,70,61),(32,108,72,63),(34,56,114,93),(36,54,116,95),(38,60,118,101),(40,58,120,103),(42,64,122,105),(44,62,124,107),(46,49,126,109),(48,51,128,111),(50,98,110,74),(52,100,112,76)], [(1,108,3,106),(2,14,4,16),(5,70,7,72),(6,42,8,44),(9,74,11,76),(10,46,12,48),(13,35,15,33),(17,39,19,37),(18,65,20,67),(21,91,23,89),(22,63,24,61),(25,77,27,79),(26,52,28,50),(29,56,31,54),(30,82,32,84),(34,105,36,107),(38,109,40,111),(41,94,43,96),(45,102,47,104),(49,120,51,118),(53,123,55,121),(57,127,59,125),(58,97,60,99),(62,114,64,116),(66,112,68,110),(69,93,71,95),(73,101,75,103),(78,119,80,117),(81,122,83,124),(85,126,87,128),(86,100,88,98),(90,113,92,115)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4P4Q···4X
order12···244444···44···4
size11···122224···48···8

32 irreducible representations

dim111111224
type+++++++-
imageC1C2C2C2C2C2D4C4○D42- 1+4
kernelC42.195D4C424C4C23.67C23C23.83C23C2×C42.C2C2×C4⋊Q8C42C2×C4C22
# reps114811484

Matrix representation of C42.195D4 in GL8(𝔽5)

30000000
32000000
00100000
00010000
00001000
00000100
00000040
00000004
,
10000000
01000000
00400000
00040000
00001300
00001400
00000013
00000014
,
10000000
14000000
00120000
00440000
00000040
00000004
00001000
00000100
,
13000000
14000000
00400000
00110000
00000020
00000023
00003000
00003200

G:=sub<GL(8,GF(5))| [3,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,3,4],[1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0],[1,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,2,0,0,0,0,2,2,0,0,0,0,0,0,0,3,0,0] >;

C42.195D4 in GAP, Magma, Sage, TeX

C_4^2._{195}D_4
% in TeX

G:=Group("C4^2.195D4");
// GroupNames label

G:=SmallGroup(128,1374);
// by ID

G=gap.SmallGroup(128,1374);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,232,758,723,100,185,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*b^2*c^-1>;
// generators/relations

׿
×
𝔽